Unsupervised learning of scene and object planar parts
نویسندگان
چکیده
In this work an adaptive method for accurate and robust grouping of local features belonging to planes of interior scenes and object planar surfaces is presented. For arbitrary set of images acquired from different views, the method organizes a huge number of local SIFT features to fill the gap between low-level vision (front end) and high level vision, i.e. domain specific reasoning about geometric structures. The proposed method consists of three steps: exploration, selection, and merging with verification. The exploration is a data driven technique that proposes a set of hypothesis clusters. To select the final hypotheses a matrix of preferences is introduced. It evaluates each of the hypothesis in terms of number of features, error of transformation, and feature duplications and is applied in quadratic form in the process of maximization. Then, merging process combines the information from multiple views to reduce the redundancy and to enrich the selected representations. The proposed method is an example of unsupervised learning of planar parts of the scene and objects with planar surfaces.
منابع مشابه
Unsupervised Modeling of Objects and Their Hierarchical Contextual Interactions
A successful representation of objects in literature is as a collection of patches, or parts, with a certain appearance and position. The relative locations of the different parts of an object are constrained by the geometry of the object. Going beyond a single object, consider a collection of images of a particular scene category containing multiple (recurring) objects. The parts belonging to ...
متن کاملA Principle for Unsupervised Hierarchical Decomposition of Visual Scenes
Structure in a visual scene can be described at many levels of granularity. At a coarse level, the scene is composed of objects; at a finer level, each object is made up of parts, and the parts of subparts. In this work, I propose a simple principle by which such hierarchical structure can be extracted from visual scenes: Regularity in the relations among different parts of an object is weaker ...
متن کاملUnsupervised object region proposals for RGB-D indoor scenes
In this paper, we present a novel unsupervised framework for automatically generating bottom up class independent object candidates for detection and recognition in cluttered indoor environments. Utilizing raw depth map from active sensors such as Kinect, we propose a novel plane segmentation algorithm for dividing an indoor scene into predominant planar regions and non-planar regions. Based on...
متن کاملSegmentation and Unsupervised Part-based Discovery of Repetitive Objects
In this paper, we present an unsupervised technique to segment and detect objects in indoor environments. The main idea of this work is to identify object instances whenever there is evidence for at least one other occurence of an object of the same kind. In contrast to former approaches, we do not assume any given segmentation of the data, but instead estimate the segmentation and the existenc...
متن کاملThesis for the degree Doctor of Philosophy
In this thesis we address two related aspects of visual object recognition: the use of motion information, and the use of internal supervision, to help unsupervised learning. These two aspects are inter-related in the current study, since image motion is used for internal supervision, via the detection of spatiotemporal events of active-motion and the use of tracking. Most current work in objec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007